
REVISION: 5/7/14

THE ROLE OF SO

CHAPTER

I DIGITRAX SOUND
II DIGITRAX SOUND
III SOUND PROJECT
IV SIMPLE MODIFICA
V CV AND FKEY ASS

S

VI MORE COMPLEX
VII MODIFYING SOUN
VIII INTRODUCTION T
IX USING THE MACR
By Fred Miller, MMR

PAGE

INTRODUCTION

UND IN MODEL RAILROADING..2

SECTION I - BASICS

FX® DECODERS..4
LOADER® SOFTWARE...6
FILE (SPJ) ..8
TIONS TO THE SOUND PROJECT FILE...........................9
IGNMENTS IN A SOUND PROJECT...............................13

ECTION II – MORE INVOLVED

MODIFICATIONS TO SOUND PROJECTS.......................14
D FILES IN A SOUND PROJECT.....................................17
O THE SDL MACRO LANGUAGE.....................................20
O ASSEMBLER...24

INTRODUCTION

The scope of our model railroading has continued to grow over the many years since hobbyists
first started modifying their tinplate trains. Modelers have been building more detailed
representations of the prototype railroads that they reproduce in miniature. In the past dozen
years or so capability has been made possible by better building materials and the application of
advanced electronics. The introduction of Digital Command Control (DCC) is one example of a
capability that enables more realistic operation of model railroad equipment.

Availability of relatively inexpensive
miniaturized electronics producing
sounds has also brought a whole new
dimension to the model railroad hobby.
Although sound in the form of whistles
and horns was introduced many years
ago in the tinplate train sets, recent
advancements enable the use of exact
sound representations appropriate to
specific models. Electronic equipment is
now available for “modeling” the sounds
of all types of steam and diesel
locomotives, interurban and streetcars,
and even rolling stock with unique
sounds such as cattle cars and
REVISION 5/7/14 Pag

refrigerator cars.

The application of sounds on the model railroad layout is not limited just to the operating trains.
Whole scenes can be created with background sounds to bring the layouts into a multi-dimensional
model. Commercial units for “off-track”
sounds are available from such
manufacturers as MRC (Model Rectifier
Corp), ITT (Innovative Train Technology
Co.), RamTrack (Ram Radio Controlled
Models Inc.). These offerings are self-
contained electronics units that play
unique sounds varying from crickets and
farm critters to city and industrial sounds.
Small electronic sound playing units are
available for a user to record and
playback custom sounds. One very
capable device called the Dream Player
(Pricom Design) plays hours of user
supplied sounds recorded on flash
memory cards. To enhance the
background sounds a large collection of
sound recordings are available on CDs
and the Internet.

FREIGHT OPERATIONS ON AUTHORS TRACTION LAYOUT
AUTOMATED CAROUSEL WITH SOUND ON AUTHOR’S
e 2 of 24 5/7/14

LAYOUT

REVISION 5/7/14 Pag

Similarly several manufacturers provide sound units to be installed in model railroad rolling stock.
Some of these offerings are compatible with DC propulsion systems but most are designed for
DCC where access to throttle function keys enables comprehensive control of the sounds supplied
in the sound unit. DCC sound units, called decoders, are available from manufacturers such as
Loksound, Custom-Traxx (Tsunami), MRC and Digitrax. Each manufacturer provides a range of
steam and diesel sounds appropriate for specific equipment.

The Digitrax line of SoundFX®
decoders is currently the least
expensive solution to implement
sounds in DCC model railroad
equipment. In addition the Digitrax
decoders offer great flexibility in
customizing not only the sounds, but
also the behavior of the decoder in
reaction to various operating
situations and throttle function keys.
The rest of this document will focus
on the Digitrax sound system
decoders and supporting equipment.

To date Digitrax has published
operating manuals for each of their
sound decoders. Unfortunately a
comprehensive “Sound Decoder
Programming Manual” or a
“Language Tutorial/Description” is not availa
knowledge base in the expanded use and m
Much of the information has been shared thr
document was developed to bring that inform
decoder users.

DIGITRAX SFX DECODER MOU
ble. Users in an adhoc manner have developed the
odification of the very capable Digitrax decoders.
ough the Yahoo Digitrax Sound Users group. This
ation together as an aid to interested Digitrax sound

INTERURBAN OPERATIONS ON AUTHOR’S LAYOUT
e 3 of 24 5/7/14

NTED IN AUTHOR’S HO STREETCAR

REVISION 5/7/14 Page 4 of 24 5/7/14

CHAPTER I – OVERVIEW OF THE DIGITRAX SOUNDFX® DECODERS

Digitrax SoundFX® decoders are available in a variety of formats and pre-loaded sounds. Some
decoders are “sound only” while others are combined motor and sound decoders. The following
chart summarizes the current line of Digitrax Sound decoders:

Flash

Memory

Size

Speaker Voices

Supporte

d Sound

Clip

Format

Max

Sound

Clip

Playtime

Total

Decoder

Sound

Playtime

SFX004

(Sound Bug)

4 Megabits

(524,888

bytes)

32 ohm

28mm
3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

SFX064D

4 Megabits

(524,888

bytes)

32 ohm

28mm
3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

SFX0416

16

Megabits

(2,097,152

bytes)

32 ohm

28mm
3

8 bits,

11Khz,

Mono

~12 sec ~3 min

SDH164xx

series

4 Megabits

(524,888

bytes)

32 ohm

28mm
3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

SDH164D

4 Megabits

(524,888

bytes)

32 ohm

28mm
3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

O
B

SO
LE

TE

SDN144xx

series

4 Megabits

(524,888

bytes)

8 ohm

13mm
3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

SDN144PS

4 Megabits

(524,888

bytes)

8 ohm

13mm
3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

O
B
SO

LE
TE

SDH166D

(Replaces

SDH164)

4 Megabits

(524,888

bytes)

8 Ohm,

16x26x9

mm

3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

SDN136PS

(Replaces

SDN144PS)

4 Megabits

(524,888

bytes)

8 ohm,

10x18mm

oval

3

8 bits,

11Khz,

Mono

~12 sec ~¾ min

SDXH166D

16

Megabits

(2,097,152

bytes)

8 Ohm,

16x26x9

mm

4

8, 12, 16

bits,

11Khz,

Mono

~ 95 sec ~3 min

SDXN136PS

16

Megabits

(2,097,152

bytes)

8 ohm,

10x18mm

oval

4

8, 12, 16

bits,

11Khz,

Mono

~ 95 sec ~3 min

LEGACY DECODERS

NEW SERIES-6 STANDARD DECODERS

NEW SERIES-6 PREMIUM DECODERS

Decoder

DIGITRAX DCC SOUND DECODERS

REVISION 5/7/14 Page 5 of 24 5/7/14

Some SoundFX® decoders, such as the “Board Replacement” types come with sounds specific to
a prototype locomotive. Other SoundFX® decoders were made to fit a variety of existing DCC
installations so they come with generic diesel and steam sound schemes. Some SoundFX®
decoders include a 32 ohm speaker but you can substitute different speakers. Speakers, or
combination of speakers, with as low as 8 ohms can be used successfully, however the overall
volume may need to be reduced to prevent amplifier overload when using 8 ohms where the
decoder was expecting 32 ohms. The latest decoder releases are using 8 ohm speakers, some
with an enclosure. An external hold up capacitor is included to improve performance on dirty track.
The speakers and the capacitor are wired external to the decoder proper to give flexibility in the
installation of the decoder.

As is the case with all DCC decoders, the Digitrax sound decoders have a micro-controller
(computer chip) central to their operation. In most cases the software program running in the
micro-controller is a fixed series of operations based upon the parameters established in the form
of Control Variables (CVs). The Digitrax SFX® decoders are unique in that it is possible to re-
program the controlling software. This is a somewhat more complicated procedure than just
replacing sounds but will be discussed later in this document.

The “Legacy” and Standard Series-6 DigitraxFX® sound decoders are capable of three “voices”
while the Premium Series-6 decoders have four “voices.” That means they can independently play
up to three (or four) different sounds at the same time. The program running inside the decoder
can initiate these sounds based on a number of internal or external activities, for example pressing
a throttle function key or changing the locomotive speed. The sounds defined in that program
have a priority for playing, i.e., within one of the voices, a higher priority sound could interrupt a
lower priority sound. Care must be exercised in setting those priorities when building a new
program.

In addition, the software running in the decoder could have multiple “schemes” or personalities.
Only one is active at a time but can be selected with a Configuration Variable (CV) setting. Many
of the original Digitrax SoundFX® decoders were released with a sound program of two schemes,
one a generic diesel locomotive and the other a steam locomotive. Changing the Scheme
Selection CV (CV60) changes the “personality” of the decoder from diesel to steam. Some recent
Digitrax SoundFX® decoders, e.g., SDXH166D, are sold with 8 different sound schemes reflecting
a variety of locomotives. Other sound programs developed by users provide variations in the
operating characteristics and sounds by changing the Scheme Selection CV.

It is possible to customize a decoder's sound repertoire by using other sound recordings in
standard Microsoft .wav format. Any locomotive sound part (a chuff, or a brake squeal, etc) can be
replaced with an actual sound recording. This is done with the PC-based program SoundLoader®

in conjunction with a Digitrax PR2 or PR3 programmer. This process is discussed in the next
chapter. Additional information about construction of sound files is discussed in Chapter VII.

REVISION 5/7/14 Page 6 of 24 5/7/14

CHAPTER II – DIGITRAX SOUNDLOADER® SOFTWARE

Digitrax provides a software program to use in modifying the sounds and/or program running in
their SFX® sound decoders. This software is called SoundLoader® and the most current version
(V2) is available on the Digitrax web site. It is also distributed with the PR2 and PR3 interface
devices. SoundLoader's main function is to download Sound Project Files (.SPJ files) to the sound
decoder in a locomotive on a programming track via a PR2 or PR3. The next chapter describes
the contents of Sound Project Files (.SPJ file). SoundLoader® has other capabilities, too:

The program is used to install new customized sounds in place of existing project sounds
Once new custom sounds have been established on the SoundLoader® main screen, the sound
project file (SPJ) can be saved with a new name, thus creating a 'custom' sound project file that
can be shared with others.
SoundLoader® can play the individual sounds through the operating PC speakers.
In addition, the program can initiate the sounds in the connected sound decoder using an on-
screen simulated throttle, complete with F keys, direction and speed controls.
SoundLoader® is also handy for changing CVs in the connected sound decoder.
The latest version of SoundLoader® (V2.0) can also “download” (DL) sound clips into the
decoder in a lesser bit structure. For example download an original 16 bit sound clip as a 12 or
8 bit sound clip. This saves decoder memory at the expense of lesser quality sound..

REVISION 5/7/14 Page 7 of 24 5/7/14

SoundLoader® runs on a Windows PC and connects to
the sound decoder using the Digitrax PR2 or PR3
programmer and a programming track. The older PR2
programmer interface has 2 plug sockets, an RJ12 that
connects the PR2 to the programming track and a 12V
DC power supply (PS12 or PS14 -available from
Digitrax), and a DB25 serial plug that connects to the PC.
A DB25 to DB9 connector is also included with the PR2 for PCs that only support the DB9
configuration. A USB adapter can be used with the PR2 if a serial port is not available.

The newer PR3 already has the USB connectivity through a USB cable to the Windows PC. 12
VDC supply is necessary (PS12 or PS14)

AUTHOR’S SFX DECODER MULTIPURPOSE
PROGRAMMING RIG

REVISION 5/7/14 Page 8 of 24 5/7/14

CHAPTER III - SOUND PROJECT FILE (SPJ)

As indicated earlier, the Digitrax Sound Project file (SPJ) is the heart of the operating control of the
SFX sound decoder. HOWEVER, AN SPJ FILE CANNOT BE VIEWED OR DOWNLOADED
FROM A SOUND DECODER. To see the components of a sound project, an original SPJ file
must be loaded into the Digitrax SoundLoader® or other software such as the author’s
SPJVIEWER or SPJHELPER. SPJ files can be obtained from various sources including the
Digitrax web site and the Digitrax Sound Yahoo user group. Construction of custom SPJ files will
be discussed later in this document.

The SPJ "file" actually contains four different file types:

(1) All of the actual sound clips (in a specific Microsoft WAV file format)

(2) A MAP file that matches the sound clips (in the sequence shown by the SoundLoader®) to the
identification in the SDF code. The MAP file from a SPJ can be exported using SoundLoader® and
then viewed in a text editor like Windows NOTEPAD.

(3) The SDF code, which makes it all run, is compiled into a HEX file from an Assembly Language
(ASM) file using a Macro Assembler such as is available from MicroChip Technologies (and
included in their free MPLAB IDE). Note this whole process actually develops the programming
code, which subsequently runs in the micro controller inside the sound decoder.

(4) A descriptive Text file (TXT) which serves two purposes:

(a) Readable documentation about the project

(b) Descriptive information, which pops up when using the SoundLoader® software, e.g., pop up
descriptions of the F keys and the default CV values.

These Descriptive Files can be viewed directly in Sound Loader (VIEW pull down menu) and can
also be exported for modification. Note that only the .TXT Descriptive file and the .MAP Handle file
are normally accessible from an existing Sound Project using SoundLoader®. However a software
product called SPJHELPER©, described later in this document, does provide a tool to extract these
and the other components (WAV files, translated SDF file, etc.) from existing Sound Projects.

REVISION 5/7/14 Page 9 of 24 5/7/14

CHAPTER IV – SIMPLE MODIFICATIONS TO THE SOUND PROJECT FILE

The SoundLoader® software, available without charge from the Digitrax website, is used modify
sound projects (SPJ) and download them into a decoder thru the PR2 (or PR3) Programmer. This
program can be used without the PR2 (or PR3) to examine existing sample SPJ files and play the
individual .wav sound files through the PC Speaker. SoundLoader® is used to manage a single
"package" which contains the .wav sound files, SDF function code, a MAP file, and a TXT text
description file.

The SoundLoader® display screen shows the following information:

The sound “Number” and “Name”, e.g.,”007 Diesel_horn_begin” is listed in the sequence
referenced in the MAP file. On the same line the actual wave file filename, play time and file size
are shown. For example “Diesel_horn_begin.wav” is the original wave sound file name, which
plays for 0.059 seconds and has a file size of 657 bytes. The 11025 sample rate, 1 channel
(mono) and 8, 12, or 16 bits are standard for all SoundLoader® useable sound files.

A left mouse-click on any sound line will play that sound file through the PC speakers. A right
mouse click on the sound line will pop up a menu to enable playing that sound in a loop
(continuous until interrupted) or remove that sound from the project (substituting silence) or
replacing the sound wave file with another sound wave format file.

Some sound files are used in sets. In the example above the three sounds “Diesel_horn_begin”,
“Diesel_horn_cont”, and “Diesel_horn_end” would probably be played with the DCC Throttle F2
Function key as follows: “Diesel_horn_begin” plays once in it’s entirety, followed by
“Diesel_horn_cont” playing continuously (looping) while the F2 Function Key is held down, and
then “Diesel_horn_end” would play once when the Function Key is released. Although the
program running in the decoder controls the operation of these sounds, the actual sounds can be
replaced using SoundLoader® software.

Creation and editing of sound files can be challenging but free software (e.g., Audacity and
WavePad) is available to accomplish this task. Chapter VII is an extract from the Digitrax web site,

REVISION 5/7/14 Page 10 of 24 5/7/14

which provides further guidance and suggestions on creating and editing sound files for use in
Digitrax Sound Projects.

When replacing the sound files in the sound project, it is possible to erroneously put more .wav
files into the project than the decoder can hold. When this happens, the decoder will not respond
to movement instructions or play any sounds. The solution is to re-edit the sound project and
remove some of the sound files and download it again. SoundLoader® does provide approximate
information about the size of the project but it is easy to miss the fact that the result is more than
the amount of decoder memory.

It is important to save any new .wav files in the correct format, always choose 11025
samples/second, mono and 8, 12 or 16 bits. The micro chip and the control software used in the
Digitrax SoundFX® “legacy” or Standard decoders cannot address files greater than 128K (131,072
bytes or just shy of 12 seconds play time at the 11 MHz wave file sampling rate) If a file of greater
length is loaded, the sounds for that clip AND all of the clips defined (in the sequential list) after
that clip will not play. The newer Series-6 Premium decoders can handle individual sound clip files
as long as 1,048,575 bytes, or about 95 seconds play time. However, sound clips defined earlier
in the list will play, assuming the total memory size hasn't been maxed out.

REVISION 5/7/14 Page 11 of 24 5/7/14

WAVEPAD is one of several free software programs that can be used to “edit” sound clips. Selecting portions
of larger sound files and amplifying or otherwise changing characteristics are some of the functions that can
be accomplished. The “cut and paste” operations are similar to word processing.

REVISION 5/7/14 Page 12 of 24 5/7/14

TIPS:

Don't use a file of greater than 131,072 bytes (Legacy/Standard decoders) or 1,048,575
bytes (Series-6 Premium) as shown in the SoundLoader® sound clip list)

Make sure, after loading a project into a decoder, that the amount of "Available Free Flash"
is NOT a negative number. Click on the "Get more info" button in lower left to assure a good
reading. If it's negative, the project is too big.

If you are having sound problems (and you don't have any of the above problems), try doing
a "Manual Erase" of the decoder memory, cycle the power to the decoder (or PR 2/3), and
then check to see it the "Available Free Flash" memory is the same as the total "Flash Size"
shown above. Then do a new clean project load. The total size of the Sound Clips plus the
SDF program are always a couple of K bytes larger than what SoundLoader® says is the
"Project Size.”

Many of the Digitrax Sound decoders contain 4 Megabits of memory. That's 524,288 bytes
of Flash Memory. The SFX0416 and the Series-6 Premium decoders contain 16 Megabits -
or 2,097,152 bytes, four times as much Flash Memory for those 'bigger projects."

After a Sound Project’s sound files have been adjusted as desired, a click on the SoundLoader’s
big green button titled “Download Sound Project to SFX Decoder” will copy the modified Sound
Project (SPJ) into the decoder. The software will first erase any previous projects from the
decoder and then download the new project.

If the big green button is not active, the screen will instead display diagnostic information which
may indicate either the Software cannot access the PR3 (or PR2) because of an invalid or
erroneous PC Port assignment, or a powered PR2/3 is not properly connected to a Digitrax sound
decoder. The SoundLoader® HELP facility provides extensive guidance in proper connections and
troubleshooting.

REVISION 5/7/14 Page 13 of 24 5/7/14

CHAPTER V – CV AND FKEY ASSIGNMENTS IN A SOUND PROJECT

Control Variables (CVs) are used to adjust the operation of a DCC decoder. A number of CVs are
useful in modifying the operation of Digitrax Sound Decoders. These CVs can, among other uses,
change the volume of some or all of the sounds, or even select between alternate sounds. Many
of the sound decoder related CVs have a predefined function. However the function of other CVs
in the range of CV140 - CV180 can have different functions depending upon the Sound Project
loaded into the decoder.

IMPORTANT: THE LISTING OF CVS CONTAINED IN THE DOCUMENTATION SUPPLIED WITH
DIGITRAX SOUND DECODERS APPLIES ONLY TO THE SOUND PROJECT INITIALLY
LOADED INTO THAT DECODER. If other Sound Projects are subsequently installed, there MAY
BE different CV assignments in the 140 - 180 range

In the same way, use of DCC Throttle Function Keys is defined in the Digitrax documentation for
each new sound decoder. THOSE ASSIGNMENTS MAY BE DIFFERENT FOR SUBSEQUENTLY
LOADED SOUND PROJECTS.

The Descriptive text file included in all valid Sound Project files (SPJ) should be consulted for CV
and Function Key assignments. This Descriptive text file is accessible using SoundLoader® as
described earlier.

Some of the CVs that have fixed functions are:

CV11 Code indicating Sound Time Out when loco address is de-selected
CV58 Master volume setting (applies to all sounds)
CV60 Selection of Sound Scheme (in multiple scheme projects)
CV132-134 Various settings for Speed Notching, use of external CAM and Steam engine chuff

gear ratios
CV135 Volume setting when all sounds are “muted” (F8 or some other key defined in Sound

Project)
CV140-180 User defined. Although these are sound file dependent and can be user defined

CVs, the SoundLoader® does reference CV152 & 153 for “author and project number
display on the SoundLoader® screen.

REVISION 5/7/14 Page 14 of 24 5/7/14

CHAPTER VI – MORE COMPLEX MODIFICATIONS TO SOUND PROJECTS

We saw earlier that the sounds played in the Digitrax sound decoders can be replaced or deleted
in the Sound Project (SPJ) using the Digitrax SoundLoader® software. However more substantial
changes and enhancements to the performance of the decoders can be accomplished by changing
the software (program) within the SPJ. This capability is one of the features of that makes the
Digitrax sound decoders excel.

As described earlier in this document, the Digitrax Sound Decoders are controlled by a micro-
processor with appropriately loaded software. The software that controls the sound operations in
the SFX decoders can be modified/replaced with new software written in a particular programming
language. The Sound Definition Language (SDL) that AJ of Digitrax developed is used to build the
code that runs inside the micro-controller (computer) in the sound decoders. As a result, fantastic
capabilities are there for anyone who can jump into the pond.

Some of the possible changes to existing sound projects include reassignment of Function Keys,
addition of new sounds, addition of new Function Key or motor related (speed, direction, etc.)
sound activities and timer controlled sounds. Indeed whole new sound projects can be created for
use in locomotives, rolling stock and off-line sound systems.

The MicroChip micro-controller, which Digitrax uses in their SFX decoders, could be programmed
using all kinds of languages that are then compiled into the code that runs in the micro-controller
(computer). However, at manufacturing time Digitrax loads some firmware (fixed software) into the
decoders, which "interprets" a user (or Digitrax) supplied program. The latter program is written in
the SDL language, which AJ created. It’s really an ASM macro language, which means each
statement in the SDL is broadened out to full ASM language. Two necessary “macro include”
(.INC) files are used to do that "translation" of the user supplied SDL into code at assembly time
using a Macro Assembler (MPASM). The resulting assembled code can then be loaded into the
micro-controller (the .HEX file) using the Digitrax SoundLoader® software.

The Sound Project software (SDL) is written using the macro statements that reference the various
“triggers” (Function Keys, Throttle changes, Timers, etc.) and sound clips of the Sound Project, to
accomplish the desired sound performance. Other files are needed for the Sound Project as
described in Chapter III. The software (in HEX format), the MAP and Descriptive Text files are all
loaded into a new project within the SoundLoader® software. The MAP file will cause the
SoundLoader® screen to display the sound clip names. Individual wave sound files must then be
associated with the sound clip names in a manner discussed earlier in Chapter IV. If sound
projects are to be developed using only text and sound editors and the Micro-Chip MPASM, it is
highly recommended that extensive reference and copying from existing projects is made in order
to get the correct formats. Installation and use of the Micro-Chip MPASM within their development
system (MPLAB®-IDE) is beyond the scope of this document. Some guidance notes are provided
in Appendix C. An overview of the SDL language is provided in Chapter VIII.

The SPJHELPER
© software, available free from the author’s website, offers a much simpler way to

develop the software for the Digitrax SFX decoders. That software tool actually operates in two
modes or personalities:

REVISION 5/7/14 Page 15 of 24 5/7/14

It has functional support for the non-techie to enable creation of all the components
necessary for the Digitrax SoundLoader® software to load into a Digitrax SoundFX®

decoder, and
Alternatively, SPJHELPER© has easily accessible tools for the more experienced
programmer to build the necessary files with ease.

In the first mode, users can create competent Sound Projects WITHOUT need for learning the SDL
macro language, and indeed all references to the assembly process is simplified down to a mouse-
click. Access to other supporting software such as a sound editor and the Digitrax SoundLoader®

is also automated with simple mouse clicks. The SPJHELPER
© automatically creates the necessary

MAP files and supporting Descriptive text files necessary for the Digitrax SoundLoader®.

Perhaps the most important feature of SPJHELPER© in the “simple” mode is the use of pull-down
menus to select the desired functions. This completely eliminates the need to deal with the SDL
macro language statements. A selection of “scripts” for more complex collection of activities is
provided to further simplify the project development. Note however that the created ASM code is
available to review or modify in the second “personality” of SPJHELPER©.

As an example, the coding for a crossing horn is generated in SPJHELPER© with a few clicks of
the mouse and selection of appropriate

sound files.
SPJHELPER
displays the
generated
coding in
easily
understood
phrases.

The coding
for that same
function in
SDL Macro

Assembler language would be more
difficult for a non-programmer to grasp:

The second mode of operation of SPJHELPER© provides easy to use references to all of the
software necessary to support development of SPJ projects at the ASM level. Access to the
assembler, text and sound editors and the Digitrax SoundLoader® is provided with simple mouse-
clicks. Selection and naming of sounds and CVs is easily accomplished and automatically
included in the final sound project loaded into the SoundLoader® software for downloading to the
SFX decoder.

Those users interested in modifying/developing sound projects at the ASM level should make
reference to the notes in Chapter VIII on the SDL language structure, and make ample reference
to the sample sound projects included with SPJHELPER© .In fact a good starting point would be to
develop a sound project in the SPJHELPER© “simple” mode and then study/modify the generated

REVISION 5/7/14 Page 16 of 24 5/7/14

ASM code in the "Nittie Gritty" mode. This approach has the added advantage of letting
SPJHELPER© generate all of the necessary sound file references and supporting files.

Go through the entire development and decoder load with the "simple" mode FIRST. That sets
up all of the necessary files and references needed for the sound project and SoundLoader®.
Go back and make ASM changes/additions and reassemble in the "Nittie Gritty" mode and

load the NEW HEX file into SoundLoader®, and then the decoder. Note that ONLY the new
HEX file need be loaded to the decoder using the appropriate commands in SoundLoader®.
CAUTION: DON'T go back and (re)generate the project in the "simple" mode. That will cause
your ASM changes to get replaced and you would have to go back into "Nittie Gritty" mode and
post the previous changes again.

Actually Import the HEX file, not the SDF file

Download HEX file to decoder,
don’t’ need to download whole
project

REVISION 5/7/14 Page 17 of 24 5/7/14

CHAPTER VII – MODIFYING SOUND FILES IN A SOUND PROJECT

This Appendix is an extract from Digitrax Web site Knowledge Base, used with permission from
Digitrax

If you're really motivated you can take .wav files and make your own customized sound project
files. This process of converting 'raw' sounds recorded in the field into a sound project file is
exacting if the finished sound project file is to sound realistic. There are two kinds of sounds in
SoundFX® decoders, simple sounds, and sequenced sounds. A simple sound is a sound that
always sounds the same and always has the same length. An example of a simple sound is a bell.
The striker strikes the bell and it rings for a certain length of time.

To prepare a simple sound, using any sound editor software (there are several links to free sound
editors on the Sound Depot web page):

Isolate the sound by trimming the excess time from the recording by carefully marking the
beginning and the end of the sound you want to hear.
Save this trimmed file as a .wav file. Make sure the saved .wav file format is "8 bit" and 11
KHz. Be sure to take note of where on your hard drive you saved this file.
Open (run) the SoundLoader® software.
The main screen of SoundLoader® will show you various parts of the locomotive's sound
scheme (Diesel Bell, Diesel Brakes, etc.).
Locate the sound type you want to change in this list and "right-click" on that entry - one of the
menu choices will be "Assign Sound File" - Select this option.
Navigate (browse) to the new .wav file you've created, select the file and click the 'Open'
button.

You've now successfully modified your Project file. Using the File|Save command, save your
customized sound project file (SPJ) with a new file name.

You can repeat the above steps and replace as many (or all) of the sound types as desired in the
original sound project file. Once you've created this new sound project file you can download it
directly to your Locomotive using SoundLoader's "Program" button, email it to a friend who has a
similar Locomotive, or upload the sound project file to the Digitrax Sound Depot website for other
users to have fun with.

The other type of sound SoundFX® decoders support is sequenced sound. A sequenced sound is
a sound that is made up of three parts: an Attack sound, a Sustain sound, and a Decay sound.

Attack is the starting sound
Sustain is the running part of the sound
Decay is the 'end' sound

An example of a sequenced sound is the horn. Blowing the horn for 15 seconds requires an Attack
sound that begins the sequence, a Sustain sound that prolongs the sound for as long as desired,
and finally ends with a Decay sound. In actual practice, file sizes for the beginning and end of the
sound, the Attack and Decay, may possibly be larger than the Sustain because the Sustain is

REVISION 5/7/14 Page 18 of 24 5/7/14

simply a small snippet of sound repeated as long as needed.

Examples of SoundFX® sequenced sounds are the Whistle, Water Pump and Horn. In the
SoundLoader® main screen you'll see each of these sounds have a Start, Run, and End
component. To prepare a sequenced sound you'll need to make 3 .wav files (The Start, Run, and
End parts).

The finer points of making natural sounding sequenced sounds include:

Recording several complete sound events (several complete whistle blows from start to
finish, etc.).
If possible, make these recordings each time varying distance from the Locomotive. If you're
going out to a distant site to make the sound recordings, you might as well come back with
more than one recording to choose from. A single recorded whistle blow may sound great
by the siding, but may not sound as good once you listen to the recording at home; get
several recordings from different distances and give yourself the latitude to choose the best.
Making several recordings will also help you avoid picking up unwanted background noise
on all of the recordings. Things like a car driving by or a bird chirping are NOT sounds that
come out of real locomotives. If you make several recordings of each sound you are more
likely to be able to find sound fragments that don't have these extras.
Once you've chosen the best recording, you'll need to isolate the complete sound by
trimming the excess time from the recording.
The goal is to get just the complete sound event (whistle/horn blow/etc) with almost no

sound before or afterwards on the recording. Once you've got it, save this file. Save a copy of it
(with a different name) in a safe place on your hard drive.

The Start Part

Listen to your newly trimmed sound. Depending on the sound editor you're using, playing from the
beginning you'll eventually be able to "see" a place on the timeline where the sound stabilizes. In
other words, you'll be able to see the point on the timeline where the tone of the sound starts to
remain constant. That's the point where you want to make your first cut. Save this file segment in
the 8 bit / 11 KHz format. Be descriptive, if it's a horn recording name it something easy for others
to identify like:

GMF7_horn_start.wav

The Run Part

This one is straightforward; depending on how long the total recording is most of it will be the
stable "run” part of the sound. Copy a piece of this sound (typically less than 1 second long) to the
clipboard and save it. It's a good idea to use the sound editor to listen to this sound running as a
continuous loop to make sure that the looping transition sounds realistic. If you like what you hear,
name it something consistent and descriptive like:

GMF7_horn_sustain.wav

REVISION 5/7/14 Page 19 of 24 5/7/14

The End Part

By now you've probably got the hang of it. Mark the point in your recording just before the run
sound starts to change, copy from this point to the very end of your sound clip. Save it naming it
something like:

GMF7_horn_end.wav

You're now ready to overlay these newly created sound components (.wav files) into another
sound project file to create a new sound project file. You can customize any sound project file,
there's no limit to what you can create with Digitrax SoundFX®.

REV

CHAPTER VIII – INTRODUCTION TO THE SDL MACRO LANGUAGE

Computers (including micro-controllers) operate by following steps outlined in a “program.” Each
step in a program is executed and then the computer moves to the next step. Some programs
(and computers) also allow for “interruptions” in the processing, causing the execution of a different
series of steps. The SDL language operating in the micro-controller of the Digitrax sound
decoders does just that. The flow of control is interrupted by a variety of “triggers.” For example
when a throttle Function Key is pressed, the program reacts to that “trigger” to perform the steps
defined for that Function Key.

The program and micro-controller provide for variables or registers (memory locations) that can
have values set and later tested. Some of these registers are defined to reflect the operational
state of the decoder, e.g., current throttle setting (speed) or current value of a CV.

Construction (syntax) of code in the ASM file is important. The SoundLoader® and the decoder
require the software statements to be organized in a specific pattern. The various sections of the
software as well as all the action statements (program steps) are defined by SDL macros. A valid
program would contain sections as follows:

The
cod
eac
(num
at ru
3 di

For
for
SPJ

with

The
defi
trigg
“trig
line
Oth
bran
trigg
the
tab)
Names of Sound Clips (as will be referenced later in the code)
Definition of any variables including names of CVs to be referenced later in the code
Scheme and Voice section delineations (see below)
ISION 5/7/14 Page 20 of 24 5/7/14

definition of the sound clips, CVs and any special user variables are placed early in the
ing. The operating statements follow these definitions for each SCHEME and VOICE within
h SCHEME. Note that Sound Projects can contain the code for a number of SCHEMES

bered from 0, 1, etc.), only one of which is operational in a decoder, each selected by CV60
n time. Also each SCHEME can have sound operations for up to three VOICES. That means

fferent sounds can be playing at the same time, one in each VOICE.

development of new Sound Projects it is highly recommended that the overall syntax
a project be “copied” from an existing project. If using the “Nittie Gritty” mode of
HELPER

©, a skeleton format can be automatically generated and subsequently fleshed out
code.

code within a VOICE defines how the decoder will play sounds. One or more “events” are
ned, each starting with a definition of what will “trigger” the following command activities. This
ering statement starts with an INITIATE_SOUND statement, followed with the name of the
ger” command, followed by an indication of when the triggering should occur. Subsequent
s of code define actions to be taken such as setting volumes and playing specific sounds.
er actions could include setting values in various registers or testing the status of registers and
ching control to other portions of code based on the test. The definition statements for a
ered event are terminated with an END_SOUND statement, (generally) the last statement in
event. ALL statements should be indented from the left margin (with one or more spaces or a
EXCEPT labels or Tags that are referenced in the “BRANCH_TO” command. The labels or

Code within each Voice (within a Scheme)

R

tags must be in the left margin without indenting. Here’s a simple example of a triggered event.
Note the indenting for easy reading of code:

Any text beginning with a semi-colon (;) defines a comment. Comments are suggested for easier
reading and later reference . In this example the code segment will operate when Function Key F2
is first turned on. TRIG_SF2 defines the Function Key and NORMAL defines “when first turned on.
The first action command in this triggered event sets the volume for any following sound using a
CV value. SCV_GONG_VOLUME is the name of the CV that would have been defined previously
in the code. HNDL_GONG is the name of the sound clip also defined previously.

Note: The program only references the assigned sound clip name. That name is only associated
with an actual sound clip wavefile in the SoundLoader® program prior to downloading the program
to the sound decoder.

The next example adds more function to the above example by selecting different sounds
depending upon a CV setting. Note that the added third statement initiates a comparison between
a CV value and a program provided (IMMED_DATA) parameter. If the comparison result is equal
(SKIP_SAME) the following statement is “skipped.” That following statement is a branch to a label
PLAY_GONG_TWO. The result of this combination of test and branch statements is that if a CV
named SCV_GONG_TYPE currently has a value of “2” then sound clip HNDL_GONG2 will play,
otherwise HNDL_GONG1 will play.

N
c
s
p
v

;--
; F2 to play single "GONG"
;--

INITIATE_SOUND TRIG_SF2,NORMAL ;triggered when F2 first turned ON
LOAD_MODIFIER MTYPE_GAIN,IMMED_GAIN_MODIFY,SCV_GONG_VOLUME,SCALE_F ;set volume
PLAY HNDL_GONG,no_loop,loop_STD

END_SOUND
;--
; F2 to play GONG2 if SCV_GONG_TYPE = 2, play GONG1, otherwise
;--

INITIATE_SOUND TRIG_SF2,NORMAL
LOAD_MODIFIER MTYPE_GAIN,IMMED_GAIN_MODIFY,SCV_GONG_VOLUME,SCALE_F
MASK_COMPARE SCV_GONG_TYPE,IMMED_DATA,2,COMP_7LSB,SKIP_SAME ;If 2 skip Branch
BRANCH_TO PLAY_ONE
PLAY HNDL_GONG2,no_loop,loop_STD

END_SOUND
PLAY_ONE

PLAY HNDL_GONG1,no_loop,loop_STD
EVISION 5/7/14 Page 21 of 24 5/7/14

ote that the label, or tag, (PLAY_ONE) referenced in the BRANCH_TO is NOT indented. By
onvention the INITIATE_SOUND and the END_SOUND statements are indented somewhat (3
paces) and the contained action statements are indented some more (6 spaces). Also note the
lacement of spaces and commas (,) within the statements to separate the command and the
arious parameters.

END_SOUND

R

Some other action “triggers” which are available in the SDL language include:

The last parameter in an INITIATE_SOUND statement defines when the following statements will
be executed. Possible parameters could be:

S

T
s

T
s

TRIG_SF1 through TRIG_SF28 Function Keys
T_SPD_ACCEL1 Throttle setting just caused acceleration
T_SPD_DECEL1 Throttle setting just caused deceleration
T_SPD_IDLE Throttle entering Idle state
T_SPD_IDLEXIT Throttle leaving Idle state
TRIG_MOVING Throttle has loco moving (not 0 speed)
T-SPD_DIR_CHNG Throttle changed loco direction
TRIG_TIME_16PPS This trigger is activated 16 times per second
TRIG_FACTORY_CVRESET When CV8 is set to 8 or 9 to reset CVs
TRIG_SCAT0 through TRIG_SCAT7 Available TIMERS which can have trigger time set by program
TRIG_DISTANCE Execute when DISTANCE register counts down to 0
TRIG_CAM Execute when “white wire” is grounded, as in steam engine cams
TRIG_SND_ACTV11 Executes when decoder is selected (or dispatched)
NORMAL execute once when the defined trigger first turns on, as in above examples
RUN_WHILE_TRIG execute whole event continuously while trigger is on
ome available action command statements are:

he PLAY command statement uses a parameter (in addition to the named sound clip) to define
ingle or repetitive playing:

he LOAD_MODIFIER command uses a parameter to specify information about the next following
ound clip or specify how a register may be changed.

NOT_TRIG execute when the defined trigger turns OFF

PLAY Initiate playing a defined sound clip
LOAD_MODIFIER Change value in a Register
MASK_COMPARE Compare a Register to another Register or supplied value
BRANCH_TO Change operation sequence to a named label (or Tag)
DELAY_CV Pause execution for time defined in Register, e.g., CV
DELAY_THIS Pause execution for time defined by a supplied value
SKIP_ON_TRIGGER Like a comparison but looking at a Trigger state on or off (True or False)

No_loop,loop_STD means play the sound clip once to completion
Loop_till_init_TRIG means play the sound clip repeatedly until the initiating Trigger is OFF – useful for
holding a sustained sound such as a whistle or air pump.
MTYPE_GAIN Set the volume (using a CV)
MTYPE_PITCH Set the pitch (depending upon throttle speed setting)
MTYPE_BLEND Blend the next to play sound into the currently playing, if any

MTYPE_SCATTER Set the specified Timer

MTYPE_SNDCV Set a sound CV value
MTYPE_WORK_INDIRECT Modify Register specified in first Parameter with CV Register in second
Parameter
EVISION 5/7/14 Page 22 of 24 5/7/14

MTYPE_WORK_IMMED Modify Register specified in first Parameter with value specified

R

The MASK_COMPARE statement can compare internal Registers with other registers (e.g. CVs or
user defined work areas) or with constants supplied within the compare statement.

The MASK_COMPARE statement also specifies a “bit mask” to select which bits of the Register or
value are to be compared. The masks can be HEX or DEC values, or predefined names of values.
Normally a COMP_ALL is used to compare all 8 bits but a COMP_7LSB will use lower 7 bits,
ignoring any +/- sign. Sometimes other masks may be needed to get at specific bits. An example
is the Notch Register (WORK_NOTCH), which uses a different set of bits. The SND_CMD.INC file
defines a number of useful masks and the name of the mask can be used instead of an actual
HEX or DEC variable.

The last parameter of the MASK_COMPARE statement indicates what comparison is to be used:

Some of the internal pre-defined useful Registers which can be accessed in the SDL code are

T
t
a
i

IMMED_DATA Compare first argument (Register) with supplied value in second argument
TARGET_DATA Compare first argument (Register) with second argument (Register)

SKIP_SAME If both arguments are equal, the next statement is skipped
SKIP_LESS If first argument is less than the second, the next statement is skipped
SKIP_GRTR If the first argument is equal or greater than the second, next statement skipped
WORK_SPEED Current Throttle speed setting
WORK_NOTCH Current Throttle Notch setting (0-7)
WORK_DISTANCE Count down Register
WORK_USER_0 (through WORK_USER_5) Memory Registers for containing Users values
EVISION 5/7/14 Page 23 of 24 5/7/14

he above description of triggers, and action statements is just an introduction. A careful review of
he comments and data in the SND_CMD.INC file will present additional Registers, Commands
nd Parameters. Study of the ASM code in the SPJHELPER

© sample projects will give further insight
nto the SDL language.

MTYPE_SNDCV Set a sound CV value

REVISION 5/7/14 Page 24 of 24 5/7/14

CHAPTER IX – USING THE MACRO ASSEMBLER

Note: Much of the complexity of using the Macro Assembler is eliminated through the use of SPJHELPER
©

as
described earlier in this document. Installation and use is completely automated and “under the covers”

As noted in Chapter VI, the sound project software is written using predefined macro language.
The program must be compiled, along with the .INC files, using a macro assembler. A capable
Assembler is available without charge from the MicroChip web site. It is included in their Micro
controller Programming Lab – Integrated Development Environment (MPLAB®-IDE)

Installing the Macro Assembler: The MPLAB®-IDE can be downloaded from MicroChip’s website:
http://www.microchip.com Follow the links to download the latest copy into a temporary folder and
then unzip all of the files into that temporary folder. Then run “Install_MPLAB_Vxxx.exe” (where
xxx will be the latest version number.) When installing the software it may ask what devices you
will be using. The Digitrax Sound Decoders use the 8-bit MCUs. You should specify that you want
to use the MPASM suite. After the programs are installed you will have to do a restart.

Using the MPLAB® - IDE: It is useful to establish a folder with all of your project files in one place.
This would include all of the MPLAB®-IDE files specific to your project as well as your .ASM
program file and the Digitrax .INC files. (If this is your first project, it would useful to load an
available .ASM project to get a head start with the required statements.)

1. After starting the MPLAB®-IDE use the Project Wizard in the Project Pull Down Menu. It will
ask for your device which is the PIC18F242. When asked specify the project files (.ASM
and the Digitrax .INC files)

2. When the Project Wizard finishes, the Source and Header files will show. A double click on
the .ASM filename will open up an editor from which you can modify the source code.

3. Be sure to unselect the “Generate map file” checkbox in the Build Options of the Project Pull
Down menu. The MPLAB®-IDE would otherwise make a .MAP file which would replace
your Digitrax defined sound .MAP file. (This is an unfortunate use of the filename .map
extension. The two files contain very different information.)

4. When you have the source file, as you would like, you can try an assembly by clicking on
the Make command in the Project Pull Down menu. (There is also a MAKE icon in the tool
bar.) If no errors are detected, you will see a BUILD SUCCESSFUL, otherwise you will see
the errors listed. Corrections are necessary to the source code and then another MAKE
until no errors are shown. (It is easy to switch back to the listing of the source by clicking on
the [x] in the status window.

The MPLAB®-IDE will automatically save all changes to your .ASM and when you restart MPLAB®-
IDE at another time, the same project will be loaded.

